Chapter 12: Chemical Bonding

These Notes are to <u>SUPPLIMENT</u> the Text, They do NOT Replace reading the Text Material. Additional material that is in the Text will be on your tests!

To get the most information, <u>READ THE CHAPTER</u> prior to the Lecture, bring in these lecture notes and make comments on these notes. These notes alone are NOT enough to pass any test!

Bond: a force that holds groups of two or more atoms together and makes them function as a unit

Bond Energy: the energy required to break the bond

Ionic Bonding: Ionic substances are formed when an atom loses an electron relatively easily

 $[Na \rightarrow Na^+ + 1e^-]$ and reacts with an atom that has a high affinity for electrons $[Cl + 1e^- \rightarrow Cl^-]$ and this

forms an Ionic Compound [$Na^+ + Cl^- \rightarrow NaCl$].

Covalent Bonding: Electrons are shared by the nuclei of two atoms. Hydrogen forms H2 which is H : H

where the electrons reside in the space between the two nuclei and around the two atoms.

Pic of Hydrogen and electrons

Polar Covalent Bond: An unequal sharing of electrons due to the difference in electronegativity of each atom.

<u>Pic of HF</u>

Electronegativity: is the relative ability of an atom in a molecule to attract shared electron to itself.

The higher the Electronegativity value, the more that atom attracts an electron.

Left side – Cesium (Cs) has a low Electronegativity of 0.7 – it gives up electrons Right Side – Fluroine (F) has a high Electronegativity of 4.0 – it sucks up electrons Bond Polarity is related to the difference between the Electronegativity values of the different atoms

Difference	Bond type	Exam	ple	
Greater than 1.8	Ionic Bonds	NaCl	MgBr	2
Greater than 0.5	Polar / Polar Covalent Bonds	H-Cl	H-F	H-O-H
Less than 0.5	Covalent Bonds which are Non Polar.	H:H	CH_4	H ₃ C-CH ₃

Dipole Moment: a molecule where the electrons reside more towards one atom than the other due to differences in Electronegativity.

 $^{+}H - F^{-}$

Electron Configurations: [See Periodic Table]

Example:

<u>Name</u>	<u>Symbol</u>	<u># e⁻</u>	Config	Loss/Gain Equation	Final Config
Sodium	Na	11	$1s^2 2s^2 2p^6 3s^1$	Na \rightarrow Na ⁺¹ + 1 e ⁻	$1s^2 \ 2s^2 \ 2p^6$
Magnesium	Mg	12	$1s^2 2s^2 2p^6 3s^2$	Mg \rightarrow Mg ⁺² + 2 e ⁻	$1s^2 2s^2 2p^6$
Aluminum	Al	13	$1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^1$	Al \rightarrow Al ⁺³ + 3 e ⁻	$1s^2 2s^2 2p^6$
Oxygen	0	8	$1s^2 2s^2 2p^4$	$O + 2 e^{-} \rightarrow O^{2-}$	$1s^2 2s^2 2p^6$
Fluorine	F	9	$1s^2 2s^2 2p^5$	$F + 1 e^- \rightarrow F^{1-}$	$1s^2 2s^2 2p^6$
Neon	Ne	10	$1s^2 2s^2 2p^6$	No Reaction	_

H₂O [show in 3d]

Note: All of the above lose or gain electrons to form the Neon Noble Gas Configuration! The Metals Group 1 [Na], Group 2 [Mg] and Group 3 [Al] lose electrons to form a noble gas configuration The Nonmetals Group 6 [Oxygen] and Group 7 [Fluorine] gain electrons to form a noble gas configuration.

Predicting Formula of Ionic Compounds

	U 1		
1.	Pick a Group 1, 2 or 3	Ca	
2.	Pick a Group 8 or 9	0	
3.	Show the gain or loss of electrons	$Ca \rightarrow Ca^{+2} + 2e^{-1}$	$0 + 2e^{-} \rightarrow 0^{2-}$
4.	Show the product formed!	$Ca + O \rightarrow Ca O$	

Common Ions and the Noble Gas Configurations

Group 1	Group 2	Group 3	Group 6	Group 7	Noble
					<u>Gas</u>
Li ⁺	Be ²⁺				Не
Na ⁺	Mg ²⁺	Al ³⁺	O ²⁻	F	Ne
K ⁺	Ca ²⁺		S ²⁻	Cl	Ar
Rb ⁺	Sr ²⁺		Se ²⁻	Br⁻	Kr
Cs ⁺	Ba ²⁺		Te ²⁻	I	Xe

Ionic Bonding and Structures

Cation [Li \rightarrow Li⁺ + 1 e⁻] is smaller than the parent ion as it loses an electron

Anion [$O + 2e^{-} \rightarrow O^{2-}$] is larger than the parent ion as it gains electrons

Lewis Structure

The Lewis Structure is a representation of a molecule that shows how the valenca electrons are arranged among the atoms in the molecule.

KBr Draw K⁺ with no electrons and Br⁻ with 8 electrons

- 1. Hydrogen forms a stable molecule sharing two electrons: H:H
- 2. Helium [and the other noble gases] do not form bonds as their outer electron shell is filled

3. 2n Period Non-Metals [Carbon \rightarrow Fluorine] form stable molecules when they absorb electrons to fill the valence orbitals [s² p⁶].

Octet Rule:Atoms like to be surrounded by eight electronsBonding Pair:Electrons that are shared with another atomLone Pair:Electrons that are not involved in bondingShow example of H-F

Rules for Lewis Structure:

- 1. Calculate the sum of all of the valence electrons from all of the atoms
- 2. Use one pair [2 electrons] to form a bonding pair between each bounded atoms
- 3. Arrange the remaining electrons to satisfy the Octet Rule

Write Lewis Structures for: H₂O

Multiple Bonds

In step 3, if there are not enough electrons to fill the Octet Rule, share two pairs of electrons between atoms

Example: CO₂ 2 Double Bonds

HCN 1 Triple Bond

Write Lewis Structures for:

HF	N_2	NH ₃	CH_4
CF ₄	NO^+	NO ₃	
NF ₃	O ₂	СО	PH_3
H_2S	SO4 ²⁻	$\mathrm{NH_4}^+$	SO_2

Molecular Structure or Geometric Structure represents the 3-D arrangement of atoms in space

Water: H-O-H does not exist in a straight line, the 3 D pic shows water at: DRAW ON BOARD $\perp = 105^{\circ}$

Carbon Dioxide: CO_2 is a linear structure.

Boron TriFluoride, BF₃ is Trigonal Planar with 120° bond angles.

Methane, CH4 is tetrahedral

VSEPR: Valence Shell Electron Pair Repulsion: [I'll leave this for your 1045 class!]